
medallion Documentation
Release 1.0.0

OASIS Open

Mar 27, 2020

Contents:

1 Compatibility 3

2 Custom Backends and Users 5
2.1 How to create your custom Backend . 5
2.2 How to load your custom Backend . 5
2.3 How to use a different authentication library . 6
2.4 How to use a different backend to control users . 6

3 Design of the TAXII Server Mongo DB Schema for medallion 9
3.1 The discovery database . 9
3.2 The api root databases . 10

4 Contributing 13
4.1 Setting up a development environment . 13
4.2 Code style . 14
4.3 Testing . 14
4.4 Adding a dependency . 14

5 Indices and tables 15

i

ii

medallion Documentation, Release 1.0.0

Medallion is a minimal implementation of a TAXII 2.0 Server in Python.

Contents: 1

medallion Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Compatibility

Medallion does NOT support the following features of the TAXII 2.0 specification:

• Sorting

• Pagination

• Content-Types other than the default

• Pending Add Objects responses (all Add Objects request process all objects before sending back a response)

• Medallion uses HTTP only (not HTTPS). It can be run using a WSGI server (such as Gunicorn or uWSGI)
behind a production server such as Apache or NGINX that acts as a reverse proxy for medallion.

Medallion conforms to most of the interoperability specification.

Its main purpose is for use in testing scenarios of STIX-based applications that use the python-stix2 API. It has been
developed in conjunction with cti-taxii-client but should be compatible with any TAXII client which makes HTTP
requests as defined in TAXII 2.0 specification.

3

https://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html
https://docs.google.com/document/d/11MocPK3s8im8O5-7rgZhtVHoxO72aQicJj2v-HDx-Q8/
https://github.com/oasis-open/cti-python-stix2
https://github.com/oasis-open/cti-taxii-client

medallion Documentation, Release 1.0.0

4 Chapter 1. Compatibility

CHAPTER 2

Custom Backends and Users

2.1 How to create your custom Backend

To create a custom Backend compatible with medallion you need to subclass medallion.backends.taxii.
base.Backend. This object provides the basic skeleton used to handle each of the endpoint requests.

For further examples of on how to build a custom backend look under the \medallion\backends\ directory.

2.2 How to load your custom Backend

New changes made to the library makes it easy to dynamically load a new backend into your medallion server. You
only need to provide the module path and the class you wish to instantiate for the medallion server. Any other key
value pairs found under the backend value can be used to pass arguments to your custom backend. For example,

{
"backend": {

"module": "medallion.backends.taxii.memory_backend",
"module_class": "MemoryBackend",
"filename": "../test/data/default_data.json"

},
}

Another way to provide a custom backend using flask proxy could be,

import MyCustomBackend
from flask import current_app
from medallion import application_instance, set_config

MyCustomBackend.init() # Do some setup before attaching to application... (Imagine
→˓other steps happening here)

with application_instance.app_context():

(continues on next page)

5

medallion Documentation, Release 1.0.0

(continued from previous page)

current_app.medallion_backend = MyCustomBackend

Do some other stuff...

set_config(application_instance, {...})
application_instance.run()

2.3 How to use a different authentication library

If you need or prefer a library different from Flask-HTTPAuth, you can override it by modifying the auth global
to your preference. Now, if you want to keep changes at a minimum throughout the library. You can wrap the behavior
inside another class, but remember all changes need to be performed before the call to run(). For example,

from flask import current_app
from medallion import application_instance, auth, set_config, init_backend

This is a dummy implementation of Flask Auth that always returns false
dummy_auth = class DummyAuth(object):

def login_required(self, f):
@wraps(f)
def decorated_function(*args, **kwargs):

return f(*args, **kwargs)
return decorated_function

def get_password():
return None # Custom stuff to get password using other libraries, users_

→˓backend can go here.

Set the default implementation to the dummy auth
auth = dummy_auth()

set_config(application_instance, {...})
init_backend(application_instance, {...})
application_instance.run()

2.4 How to use a different backend to control users

Our implementation of a users authentication system is not suitable for a production environment. Thus requiring to
write custom code to handle credential authentication, sessions, etc. Most likely you will require the changes described
in the section above on How to use a different authentication library, plus changing the users_backend.

import MyCustomDBforUsers
from flask import current_app
from medallion import application_instance, set_config

This is a dummy implementation of Flask Auth that always returns false
dummy_auth = class DummyAuth(object):

def login_required(self, f):
@wraps(f)

(continues on next page)

6 Chapter 2. Custom Backends and Users

medallion Documentation, Release 1.0.0

(continued from previous page)

def decorated_function(*args, **kwargs):
return f(*args, **kwargs)

return decorated_function

def get_password():
Usage of MyCustomDBforUsers would likely happen here.
return something # Custom stuff to get password using other libraries, users_

→˓backend functionality.

Set the default implementation to the dummy auth
auth = dummy_auth()

db = MyCustomDBforUsers.init() # Do some setup before attaching to application...
→˓(Imagine other steps happening here)

with application_instance.app_context():
current_app.users_backend = db # This will make it available inside the Flask

→˓instance in case you decide to perform changes to the internal blueprints.

init_backend(application_instance, {...})
application_instance.run()

2.4. How to use a different backend to control users 7

medallion Documentation, Release 1.0.0

8 Chapter 2. Custom Backends and Users

CHAPTER 3

Design of the TAXII Server Mongo DB Schema for medallion

As medallion is a prototype TAXII server implementation, the schema design for a Mongo DB is relatively straight-
forward.

Each Mongo database contains one or more collections. The term “collection” in Mongo DBs is similar to the concept
of a table in a relational database. Collections contain “documents”, similar to records.

It is unfortunate that the term “collection” is also used to signify something unrelated in the TAXII specification. We
will use the phrase “taxii collection” to distinguish them.

An instance of this schema can be populated via the file test/data/initialize_mongodb.py. This instance will be used
for examples below.

Utilities to initialize your own Mongo DB can be found in test/generic_initialize_mongodb.py.

3.1 The discovery database

Basic metadata contained in the mongo database named discovery_database.

The discovery_database contains two collections:

discovery_information. It should only contain only one “document”, which is the discovery information that would
be returned from the Discovery endpoint. Here is the document from the example database.

{
"title": "Some TAXII Server",
"description": "This TAXII Server contains a listing of",
"contact": "string containing contact information",
"default": "http://localhost:5000/api2/",
"api_roots": [

"http://localhost:5000/api1/",
"http://localhost:5000/api2/",
"http://localhost:5000/trustgroup1/"

]
}

9

medallion Documentation, Release 1.0.0

api_root_info contains documents that describe each api_root. Because the “_url” and “_name” properties are not
part of the TAXII specification, they will be stripped by medallion before any document is returned to the client.

Here is a document from the example database:

{
"title": "Malware Research Group",
"description": "A trust group setup for malware researchers",
"versions": [

"taxii-2.0"
],
"max_content_length": 9765625,
"_url": "http://localhost:5000/trustgroup1/",
"_name": "trustgroup1"

}

3.2 The api root databases

Each api root is contained in a separate Mongo DB database. It has four collections: status, objects, manifests,
and collections. To support multiple taxii collections, any document in the objects and manifests contains an extra
property, “collection_id”, to link it to the taxii collection that it is contained in. Because “_collection_id” property is
not part of the TAXII specification, it will be stripped by medallion before any document is returned to the client.

A document from the collections collection:

{
"id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",
"title": "High Value Indicator Collection",
"description": "This data collection is for collecting high value IOCs",
"can_read": true,
"can_write": true,
"media_types": [

"application/vnd.oasis.stix+json; version=2.0"
]

}

A document from the objects collection:

{
"created": "2014-05-08T09:00:00.000Z",
"id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
"labels": [

"file-hash-watchlist"
],
"modified": "2014-05-08T09:00:00.000Z",
"name": "File hash for Poison Ivy variant",
"pattern": "[file:hashes.'SHA-256' =

→˓'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c']",
"type": "indicator",
"valid_from": "2014-05-08T09:00:00.000000Z",
"_collection_id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116"

}

A document from the status collection:

10 Chapter 3. Design of the TAXII Server Mongo DB Schema for medallion

medallion Documentation, Release 1.0.0

{
"id": "2d086da7-4bdc-4f91-900e-d77486753710",
"status": "pending",
"request_timestamp": "2016-11-02T12:34:34.12345Z",
"total_count": 4,
"success_count": 1,
"successes": [

"indicator--a932fcc6-e032-176c-126f-cb970a5a1ade"
],
"failure_count": 1,
"failures": [

{
"id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",
"message": "Unable to process object"

}
],
"pending_count": 2,
"pendings": [

"indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
"relationship--045585ad-a22f-4333-af33-bfd503a683b5"

]
}

A document from the manifest collection:

{
"id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
"date_added": "2016-11-01T10:29:05Z",
"versions": [

"2014-05-08T09:00:00.000Z"
],
"media_types": [

"application/vnd.oasis.stix+json; version=2.0"
],
"_collection_id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116"

}

3.2. The api root databases 11

medallion Documentation, Release 1.0.0

12 Chapter 3. Design of the TAXII Server Mongo DB Schema for medallion

CHAPTER 4

Contributing

We’re thrilled that you’re interested in contributing to medallion! Here are some things you should know:

• contribution-guide.org has great ideas for contributing to any open-source project (not just this one).

• All contributors must sign a Contributor License Agreement. See CONTRIBUTING.md in the project repository
for specifics.

• If you are planning to implement a major feature (vs. fixing a bug), please discuss with a project maintainer first
to ensure you aren’t duplicating the work of someone else, and that the feature is likely to be accepted.

Now, let’s get started!

4.1 Setting up a development environment

We recommend using a virtualenv.

1. Clone the repository. If you’re planning to make pull request, you should fork the repository on GitHub and clone
your fork instead of the main repo:

$ git clone https://github.com/yourusername/cti-taxii-server.git

2. Install develoment-related dependencies:

$ cd cti-taxii-server
$ pip install -r requirements.txt

3. Install pre-commit git hooks:

$ pre-commit install

At this point you should be able to make changes to the code.

13

http://www.contribution-guide.org/
https://github.com/oasis-open/cti-taxii-server/blob/master/CONTRIBUTING.md
https://virtualenv.pypa.io/en/stable/
http://pre-commit.com/#usage

medallion Documentation, Release 1.0.0

4.2 Code style

All code should follow PEP 8. We allow for line lengths up to 160 characters, but any lines over 80 characters should
be the exception rather than the rule. PEP 8 conformance will be tested automatically by Tox and Travis-CI (see
below).

4.3 Testing

Note: All of the tools mentioned in this section are installed when you run pip install -r requirements.
txt.

This project uses pytest for testing. We encourage the use of test-driven development (TDD), where you write (failing)
tests that demonstrate a bug or proposed new feature before writing code that fixes the bug or implements the features.
Any code contributions should come with new or updated tests.

To run the tests in your current Python environment, use the pytest command from the root project directory:

$ pytest

This should show all of the tests that ran, along with their status.

You can run a specific test file by passing it on the command line:

$ pytest medallion/test/test_<xxx>.py

To ensure that the test you wrote is running, you can deliberately add an assert False statement at the beginning
of the test. This is another benefit of TDD, since you should be able to see the test failing (and ensure it’s being run)
before making it pass.

tox allows you to test a package across multiple versions of Python. Setting up multiple Python environments is
beyond the scope of this guide, but feel free to ask for help setting them up. Tox should be run from the root directory
of the project:

$ tox

We aim for high test coverage, using the coverage.py library. Though it’s not an absolute requirement to maintain
100% coverage, all code contributions must be accompanied by tests. To run coverage and look for untested lines of
code, run:

$ pytest --cov=medallion
$ coverage html

then look at the resulting report in htmlcov/index.html.

All commits pushed to the master branch or submitted as a pull request are tested with Travis-CI automatically.

4.4 Adding a dependency

One of the pre-commit hooks we use in our develoment environment enforces a consistent ordering to imports. If you
need to add a new library as a dependency please add it to the known_third_party section of .isort.cfg to make sure the
import is sorted correctly.

14 Chapter 4. Contributing

https://www.python.org/dev/peps/pep-0008/
http://pytest.org
https://tox.readthedocs.io/en/latest/
http://coverage.readthedocs.io/en/latest/
https://travis-ci.org/oasis-open/cti-taxii-server

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

	Compatibility
	Custom Backends and Users
	How to create your custom Backend
	How to load your custom Backend
	How to use a different authentication library
	How to use a different backend to control users

	Design of the TAXII Server Mongo DB Schema for medallion
	The discovery database
	The api root databases

	Contributing
	Setting up a development environment
	Code style
	Testing
	Adding a dependency

	Indices and tables

