

Welcome to medallion’s documentation!

Medallion is a minimal implementation of a TAXII 2.0 Server in Python.

Contents:

	Compatibility

	Custom Backends and Users
	How to create your custom Backend

	How to load your custom Backend

	How to use a different authentication library

	How to use a different backend to control users

	Design of the TAXII Server Mongo DB Schema for medallion
	The discovery database

	The api root databases

	Contributing
	Setting up a development environment

	Code style

	Testing

	Adding a dependency

Indices and tables

	Index

	Module Index

	Search Page

Compatibility

Medallion does NOT support the following features of the TAXII 2.1
specification [https://docs.oasis-open.org/cti/taxii/v2.1/cs01/taxii-v2.1-cs01.html]:

	Content-Types other than the default

	Pending Add Objects responses (all Add Objects request process all objects
before sending back a response)

	Medallion uses HTTP only (not HTTPS). It can be run using a WSGI server
(such as Gunicorn or uWSGI) behind a production server such as Apache or NGINX
that acts as a reverse proxy for medallion.

Its main purpose is for use in testing scenarios of STIX-based applications that
use the python-stix2 API [https://github.com/oasis-open/cti-python-stix2].
It has been developed in conjunction with
cti-taxii-client [https://github.com/oasis-open/cti-taxii-client] but should
be compatible with any TAXII client which makes HTTP requests as defined in TAXII 2.0
specification.

Custom Backends and Users

How to create your custom Backend

To create a custom Backend compatible with medallion you need to subclass medallion.backends.base.Backend. This object provides the basic skeleton used to handle each of the endpoint requests.

For further examples of on how to build a custom backend look under the \medallion\backends\ directory.

How to load your custom Backend

New changes made to the library makes it easy to dynamically load a new backend into your medallion server. You only need to provide the module path and the class you wish to instantiate for the medallion server. Any other key value pairs found under the backend value can be used to pass arguments to your custom backend. For example,

{
 "backend": {
 "module": "medallion.backends.memory_backend",
 "module_class": "MemoryBackend",
 "filename": "../test/data/default_data.json"
 }
}

Another way to provide a custom backend using flask proxy could be,

import MyCustomBackend
from flask import current_app
from medallion import application_instance, set_config

MyCustomBackend.init() # Do some setup before attaching to application... (Imagine other steps happening here)

with application_instance.app_context():
 current_app.medallion_backend = MyCustomBackend

Do some other stuff...
set_config(application_instance, {...})
application_instance.run()

How to use a different authentication library

If you need or prefer a library different from Flask-HTTPAuth, you can override it by modifying the auth global to your preference. Now, if you want to keep changes at a minimum throughout the library. You can wrap the behavior inside another class, but remember all changes need to be performed before the call to run(). For example,

from flask import current_app
from medallion import application_instance, auth, set_config, init_backend

This is a dummy implementation of Flask Auth that always returns false
dummy_auth = class DummyAuth(object):

 def login_required(self, f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 return f(*args, **kwargs)
 return decorated_function

 def get_password():
 return None # Custom stuff to get password using other libraries, users_backend can go here.

Set the default implementation to the dummy auth
auth = dummy_auth()

set_config(application_instance, {...})
init_backend(application_instance, {...})
application_instance.run()

How to use a different backend to control users

Our implementation of a users authentication system is not suitable for a production environment. Thus requiring to write custom code to handle credential authentication, sessions, etc. Most likely you will require the changes described in the section above on How to use a different authentication library, plus changing the users_backend.

import MyCustomDBforUsers
from flask import current_app
from medallion import application_instance, set_config

This is a dummy implementation of Flask Auth that always returns false
dummy_auth = class DummyAuth(object):

 def login_required(self, f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 return f(*args, **kwargs)
 return decorated_function

 def get_password():
 # Usage of MyCustomDBforUsers would likely happen here.
 return something # Custom stuff to get password using other libraries, users_backend functionality.

Set the default implementation to the dummy auth
auth = dummy_auth()

db = MyCustomDBforUsers.init() # Do some setup before attaching to application... (Imagine other steps happening here)

with application_instance.app_context():
 current_app.users_backend = db # This will make it available inside the Flask instance in case you decide to perform changes to the internal blueprints.

init_backend(application_instance, {...})
application_instance.run()

Design of the TAXII Server Mongo DB Schema for medallion

As medallion is a prototype TAXII server implementation, the schema design for a Mongo DB is relatively straightforward.

Each Mongo database contains one or more collections. The term “collection” in Mongo DBs is similar to the concept of a table in a relational database. Collections contain “documents”, similar to records.

It is unfortunate that the term “collection” is also used to signify something unrelated in the TAXII specification. We will use the phrase “taxii collection” to distinguish them.

An instance of this schema can be populated via the file test/data/initialize_mongodb.py. This instance will be used for examples below.

Utilities to initialize your own Mongo DB can be found in test/generic_initialize_mongodb.py.

The discovery database

Basic metadata contained in the mongo database named discovery_database.

The discovery_database contains two collections:

discovery_information. It should only contain only one “document”, which is the discovery information that would be returned from the Discovery endpoint. Here is the document from the example database.

{
 "title": "Some TAXII Server",
 "description": "This TAXII Server contains a listing of",
 "contact": "string containing contact information",
 "default": "http://localhost:5000/api2/",
 "api_roots": [
 "http://localhost:5000/api1/",
 "http://localhost:5000/api2/",
 "http://localhost:5000/trustgroup1/"
]
}

api_root_info contains documents that describe each api_root. Because the “_url” and “_name” properties are not part of the TAXII specification, they will be stripped by medallion before any document is returned to the client.

Here is a document from the example database:

{
 "title": "Malware Research Group",
 "description": "A trust group setup for malware researchers",
 "versions": [
 "taxii-2.0"
],
 "max_content_length": 9765625,
 "_url": "http://localhost:5000/trustgroup1/",
 "_name": "trustgroup1"
}

The api root databases

Each api root is contained in a separate Mongo DB database. It has four collections: status, objects, manifests, and collections. To support multiple taxii collections, any document in the objects and manifests contains an extra property, “collection_id”, to link it to the taxii collection that it is contained in. Because “_collection_id” property is not part of the TAXII specification, it will be stripped by medallion before any document is returned to the client.

A document from the collections collection:

{
 "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",
 "title": "High Value Indicator Collection",
 "description": "This data collection is for collecting high value IOCs",
 "can_read": true,
 "can_write": true,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
]
}

A document from the objects collection:

{
 "created": "2014-05-08T09:00:00.000Z",
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "labels": [
 "file-hash-watchlist"
],
 "modified": "2014-05-08T09:00:00.000Z",
 "name": "File hash for Poison Ivy variant",
 "pattern": "[file:hashes.'SHA-256' = 'ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c']",
 "type": "indicator",
 "valid_from": "2014-05-08T09:00:00.000000Z",
 "_collection_id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116"
}

A document from the status collection:

{
 "id": "2d086da7-4bdc-4f91-900e-d77486753710",
 "status": "pending",
 "request_timestamp": "2016-11-02T12:34:34.12345Z",
 "total_count": 4,
 "success_count": 1,
 "successes": [
 "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade"
],
 "failure_count": 1,
 "failures": [
 {
 "id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",
 "message": "Unable to process object"
 }
],
 "pending_count": 2,
 "pendings": [
 "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
 "relationship--045585ad-a22f-4333-af33-bfd503a683b5"
]
}

A document from the manifest collection:

{
 "id": "indicator--a932fcc6-e032-176c-126f-cb970a5a1ade",
 "date_added": "2016-11-01T10:29:05Z",
 "versions": [
 "2014-05-08T09:00:00.000Z"
],
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "_collection_id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116"
}

Contributing

We’re thrilled that you’re interested in contributing to medallion! Here are
some things you should know:

	contribution-guide.org [http://www.contribution-guide.org/] has great ideas
for contributing to any open-source project (not just this one).

	All contributors must sign a Contributor License Agreement. See
CONTRIBUTING.md [https://github.com/oasis-open/cti-taxii-server/blob/master/CONTRIBUTING.md]
in the project repository for specifics.

	If you are planning to implement a major feature (vs. fixing a bug), please
discuss with a project maintainer first to ensure you aren’t duplicating the
work of someone else, and that the feature is likely to be accepted.

Now, let’s get started!

Setting up a development environment

We recommend using a virtualenv [https://virtualenv.pypa.io/en/stable/].

1. Clone the repository. If you’re planning to make pull request, you should fork
the repository on GitHub and clone your fork instead of the main repo:

$ git clone https://github.com/yourusername/cti-taxii-server.git

	Install develoment-related dependencies:

$ cd cti-taxii-server
$ pip install -r requirements.txt

	Install pre-commit [http://pre-commit.com/#usage] git hooks:

$ pre-commit install

At this point you should be able to make changes to the code.

Code style

All code should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/]. We
allow for line lengths up to 160 characters, but any lines over 80 characters
should be the exception rather than the rule. PEP 8 conformance will be tested
automatically by Tox and Travis-CI (see below).

Testing

Note

All of the tools mentioned in this section are installed when you run pip
install -r requirements.txt.

This project uses pytest [http://pytest.org] for testing. We encourage the
use of test-driven development (TDD), where you write (failing) tests that
demonstrate a bug or proposed new feature before writing code that fixes the bug
or implements the features. Any code contributions should come with new or
updated tests.

To run the tests in your current Python environment, use the pytest command
from the root project directory:

$ pytest

This should show all of the tests that ran, along with their status.

You can run a specific test file by passing it on the command line:

$ pytest medallion/test/test_<xxx>.py

To ensure that the test you wrote is running, you can deliberately add an
assert False statement at the beginning of the test. This is another benefit
of TDD, since you should be able to see the test failing (and ensure it’s being
run) before making it pass.

tox [https://tox.readthedocs.io/en/latest/] allows you to test a package
across multiple versions of Python. Setting up multiple Python environments is
beyond the scope of this guide, but feel free to ask for help setting them up.
Tox should be run from the root directory of the project:

$ tox

We aim for high test coverage, using the coverage.py [http://coverage.readthedocs.io/en/latest/] library. Though it’s not an
absolute requirement to maintain 100% coverage, all code contributions must
be accompanied by tests. To run coverage and look for untested lines of code,
run:

$ pytest --cov=medallion
$ coverage html

then look at the resulting report in htmlcov/index.html.

All commits pushed to the master branch or submitted as a pull request are
tested with Travis-CI [https://travis-ci.org/oasis-open/cti-taxii-server]
automatically.

Adding a dependency

One of the pre-commit hooks we use in our develoment environment enforces a
consistent ordering to imports. If you need to add a new library as a dependency
please add it to the known_third_party section of .isort.cfg to make sure
the import is sorted correctly.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to medallion’s documentation!

 		
 Compatibility

 		
 Custom Backends and Users

 		
 How to create your custom Backend

 		
 How to load your custom Backend

 		
 How to use a different authentication library

 		
 How to use a different backend to control users

 		
 Design of the TAXII Server Mongo DB Schema for medallion

 		
 The discovery database

 		
 The api root databases

 		
 Contributing

 		
 Setting up a development environment

 		
 Code style

 		
 Testing

 		
 Adding a dependency

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

